The breakdown of the reaction-diffusion master equation with non-elementary rates

نویسندگان

  • Stephen Smith
  • Ramon Grima
چکیده

The chemical master equation (CME) is the exact mathematical formulation of chemical reactions occurring in a dilute and well-mixed volume. The reaction-diffusion master equation (RDME) is a stochastic description of reaction-diffusion processes on a spatial lattice, assuming well-mixing only on the length scale of the lattice. It is clear that, for the sake of consistency, the solution of the RDME of a chemical system should converge to the solution of the CME of the same system in the limit of fast diffusion: indeed, this has been tacitly assumed in most literature concerning the RDME. We show that, in the limit of fast diffusion, the RDME indeed converges to a master equation, but not necessarily the CME. We introduce a class of propensity functions, such that if the RDME has propensities exclusively of this class then the RDME converges to the CME of the same system; while if the RDME has propensities not in this class then convergence is not guaranteed. These are revealed to be elementary and non-elementary propensities respectively. We also show that independent of the type of propensity, the RDME converges to the CME in the simultaneous limit of fast diffusion and large volumes. We illustrate our results with some simple example systems, and argue that the RDME cannot be an accurate description of systems with non-elementary rates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pullback D-attractors for non-autonomous partly dissipative reaction-diffusion equations in unbounded domains

At present paper, we establish the existence of pullback $mathcal{D}$-attractor for the process associated with non-autonomous partly dissipative reaction-diffusion equation in $L^2(mathbb{R}^n)times L^2(mathbb{R}^n)$. In order to do this, by energy equation method we show that the process, which possesses a pullback $mathcal{D}$-absorbing set, is pullback $widehat{D}_0$-asymptotically compact.

متن کامل

Reaction rates for reaction-diffusion kinetics on unstructured meshes.

The reaction-diffusion master equation is a stochastic model often utilized in the study of biochemical reaction networks in living cells. It is applied when the spatial distribution of molecules is important to the dynamics of the system. A viable approach to resolve the complex geometry of cells accurately is to discretize space with an unstructured mesh. Diffusion is modeled as discrete jump...

متن کامل

Reaction rates for a generalized reaction-diffusion master equation.

It has been established that there is an inherent limit to the accuracy of the reaction-diffusion master equation. Specifically, there exists a fundamental lower bound on the mesh size, below which the accuracy deteriorates as the mesh is refined further. In this paper we extend the standard reaction-diffusion master equation to allow molecules occupying neighboring voxels to react, in contrast...

متن کامل

A numerical investigation of a reaction-diffusion equation arises from an ecological phenomenon

This paper deals with the numerical solution of a class of reaction diffusion equations arises from ecological phenomena. When two species are introduced into unoccupied habitat, they can spread across the environment as two travelling waves with the wave of the faster reproducer moving ahead of the slower.The mathematical modelling of invasions of species in more complex settings that include ...

متن کامل

Stochastic Reaction-Diffusion Methods for Modeling Gene Expression and Spatially Distributed Chemical Kinetics

In order to model fundamental cell biological processes including the transcription, translation, and nuclear membrane transport of biological molecules within a eukaryotic cell it is necessary to be able to approximate the stochastic reaction and diffusion of a small number of molecules in the complex three dimensional geometry of a cell. For this reason a method is developed that incorporates...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016